

 Vincent Jousse

 	
 Elm Europe 2017: What can we do better

 	
 Accès machine derriere NAT/Firewall avec tunnel SSH

 	
 Elm and Phoenix/Elixir in production for France TV

 	
 Interacting with a DOM element using Elm (audio/video tag example)

 	
 Elm lang, le prochain react/redux/angularjs ?

 	
 How to pass paramaters to a crossbar.io/autobahn python component

 	
 Installing ATLAS for Kaldi by disabling CPU Throttling on Archlinux

 	
 Quel langage de programmation choisir ?

 	
 Using Archlinux on a Retina (HiDPI) MacBook Pro with Xmonad

 	
 How to use the Dropbox API with scala and/or Play Framework

 	
 How to fix archlinux (rEFInd) boot after Mac OS X upgrade

 	
 PHP: you love it or you leave it

 	
 Trust the h^Wtype

 Elm Europe 2017: What can we do better

 Last week, I went to my first Elm-only conference ever: Elm Europe 2017 in Paris. At first, I was very excited about it but, in the end, I couldn't help myself but thinking: we can do better next year. Let's discuss why.

The "can do better" part

I've been programming Elm for one year now, when 0.17 came out. I'm far from being an expert, but I've been doing some "real world" projects like The transcriber to ease the correction of automatic transcriptions or Tooty, a Mastodon client. I had mainly two expectations for the conference:

	Learn new practical stuff for my real world projects

	Get some high level feedback about Elm in general (pain points, life savers, business perspectives, …)

I would say that half of the talks have fulfilled these expectations. To me, the other talks were too much like: "here is the lib I did with Elm, and it's great". Well, ok, you've done something with Elm and you're happy to share it. Cool. But what was the point of your talk? As a conference attendee, what should I remember from your talk? How does your talk profit to me, apart from informing me that the library exists?

I suppose that next year, people organizing the conference should keep this question in mind when choosing speakers: "What will be the benefits/outcome of the talk for the attendees?". This year, I was under the impression that the conference was more about showing all the cool stuff that was made using Elm and less about teaching attendees new knowledge/insights about Elm.

Regarding the subjects of the talks, I think that we (as a community) should be careful about onboarding newcomers to the Elm world. I went to the conference with three "Elm newbies", and the feedback was pretty clear: talks about "why Elm?" were missing. Not especially talks about why Elm is great (they already have ideas about it), but more in the context of the topic of the talk: what was the added value of using Elm for solving your problem?

The famous "Let's be mainstream" talk of Evan should not be forgotten. If we really want to be mainstream, we need a "mainstream" part in our conferences.

The "awesome" part

We were more than 200 people for the first Elm only conference and it was really great to see people coming from all over the world. Having 20 minutes breaks was a good idea to me. It allowed people to have real conversations between the talks. But maybe a pause every two talk would have been enough. I met a lot of great people and had some interesting discussions during these moments.

The talks of Richard and Evan were great, and I think it's a good idea to have such talks to begin the day. I would have loved to have a more "visionary" talk from Evan (and a less technical one), but it was a good moment anyway.

Special mention to my favorites talks were (I've missed the last three of day 2):

	"ELM from CTO perspective": Was great to have less code and more feeling.

	"Turning the Elm Narrative Engine inside-out: Inversion of Control at the Framework Level": it was a very informative and accessible talk. Having the demos of the progression of the game was awesome.

	"Persistent collections: How they work, and when to use them.": clear explanations (even for non-Elmers) about the force and weaknesses of some datastructure.

	"Date manipulation with Elm": The talk was informative regarding the timezones and was fun :-)

Thibault @tibastral was a great organizer, and what a showman "à la française"! He added a lot of fun to the conference, and it's something that is really important to me.

Was it a good conference? For sure! Will I come back next year? Obviously! See you next year ;-)

 Accès machine derriere NAT/Firewall avec tunnel SSH

 Ceci est plus un post it perso qu'autre chose.

J'ai une machine qui est bien cachée sur mon réseau d'entreprise / fac (appelons la, machine_cachee). Forcément, cette machine je ne peux pas y accéder facilement quand je suis à la maison car elle n'a pas d'ip publique, elle est derrière un firewall, ou une box internet, ou je ne sais quoi. Je peux encore moins accéder au serveur http qui tourne dessus depuis chez moi (je ne peux y accéder que quand je suis sur le réseau de la FAC/entreprise).

Donc, quand j'ai accès à cette machine, je lance un tunnel SSH vers un serveur dédié que je détiens sur le nainternet mondial avec un compte dessus sous le nom de mon_compte, appelons-le serveur_dedie.

De machine_cachee:

ssh -R 0.0.0.0:8888:127.0.0.1:80 mon_compte@serveur_dedie.com

Ça va ouvrir, sur serveur_dedie.com le port 8888 qui va me rediriger vers le port 80 de ma machine_cachee.

Il faut avoir rajouté dans /etc/ssh/sshd_config du serveur distant

AllowTcpForwarding yes
GatewayPorts yes

Puis:

sudo service ssh reload

 Elm and Phoenix/Elixir in production for France TV

 Are Elm and Phoenix/Elixir ready for prime time? I'll let you decide: they were both used in live during the main French political show called "L'émission Politique" to help generate a word cloud based on the guest speech. To the date of this writing, the guests were Nicolas Sarkozy (12 millions viewers), Arnaud Montebourg (9 millions) and lately Alain Juppé (X millions).

tl;dr: Elm allowed me to code a reliable frontend app in a very short time, Phoenix was so easy to grasp that I felt young again while coding the backend administration.

Context

I'm the CEO (CTO, CSO, <put any cool name here>) of Voxolab, a company providing speech recognition analytics for businesses. Lately I've been working for Voxygen, where I had the opportunity to develop a system to generate a live word cloud, based on the most frequent words pronounced by the guest of a political show.

The requirements:

	Record/transcribe the speech of the guest microphone in real time

	Generate a word cloud based on the words frequency in real time

	If possible, use a computer already available in the régie (@TODO) of France TV. It can be a different computer for each show.

	Technical people of the show should be autonomes (@TODO)

So, starting from here, I decided to develop a "web solution" that would allow me to record the sound from every computer having a browser installed (to be totally honest, having Chrome or Firefox installed) and to send it to a remote server for transcription.

Here is what I already had:

	Google Chrome installed on the computers in the régie (@TODO) of France TV with the guest microphone plugged in

	A javascript library to send microphone input to the remote server

	A live speech recognition system on a remote server

	A python script generating word clouds based on text data

Here is what I needed to do:

	A human ready interface in order to manage the connection between the browser and the speech recognition server

	A backend administration to manage the different shows, the stop words list, …

I decided to use Elm for #1 and Phoenix for #2. I've been writing Elm and Phoenix code in my side projects for only 3 months. Usually, for my business projects, I'm using Python/Flask for my backends and Mithril.js for my frontends. So, why Elm and Phoenix this time?

Why Elm?

In fact this was not the question I did ask to myself. The question was: why Javascript? And to be honest, I couldn't show up with a satisfying answer. So I decided to go with Elm, mainly for those reasons:

	I needed something I could rely on. I can rely on Elm compiler, I can't rely on Javascript runtime errors.

	I knew I would have to refactor the code a lot during a short period of time. I wanted to be confident while breaking things.

	As a business owner/recruiter, I wanted something with a low entry barrier for my future hirings. Elm has a low entry barrier, the JS ecosystem/fatigue/mess doesn't.

	I knew I could never get stuck. Interoperation between Javascript and Elm could always save me.

I was not disappointed: it's the first time I felt so confident when running a frontend app in production.

Why Phoenix?

The need for the backend app was pretty simple: some basic CRUD operations. I could have used Python/Flask for this without any problem. But I knew that it was potentially something that would need a lot of live/websockets connections in a near future. Phoenix shines in this domain and provides easy backend generation for CRUD operations. Last but not least, the entry barrier is pretty low too. The community is awesome, and the available resources are really significant now (thanks to @josevalim book Phoenix in action).

I placed a bet on Phoenix/Elixir because its ability to scale is rooted at the language level thanks to the Erlang VM.

Conclusion

So yes, Elm and Phoenix are production ready for my needs and were used in a live show with more than 10M viewers. Most importantly, I'm confident I can build my company products using both of them because:

	They answer perfectly the main problems in web development: reliability, scalability, ease of use.

	Hiring people should be easy: the entry barrier is very low, despite both of them being functional languages.

 Interacting with a DOM element using Elm (audio/video tag example)

 So, you want to write some Elm code because you're a Hipster and want to be in. Fair enough. But being a Hipster has some downsides too. You soon realize that, even if Elm is cool, it doesn't always provide all the things you may need. For example, how can you interact with the HTML Audio element or any element not yet covered by the Elm core modules? Don't worry, uncle Vince is here.

Preamble

The goal of the @elm-lang organization is to cover the entire webplatform as described in this blog post. But in the meantine, how should we interact with basic elements such as the Audio element?

We could do everything using JS ports. But as we want to stay in the Elm world as much as we can, we will read the values of the element using DOM events inside Elm. Unfortunately, for writing/mutating values (calling functions and/or updating a DOM element property) we have no choice but using JavaScript port interop.

Note: Another alternative would be writing Native modules to wrap the missing parts into some Elm greatness. But as doing so should be avoided (Native is subject to change and is not documented), this will not be covered here.

One file example

For this tutorial, we are using Elm 0.17.

Reading element values: DOM events

We will take the <audio /> tag as an example for this blog post, but keep in mind that the techniques described here apply to every DOM element.

App skeleton

Let's start with a minimal Elm program:

Main.elm (view code)

module Main exposing (..)

import Html exposing (Attribute, Html, audio, div, text)
import Html.Attributes exposing (class, controls, type', src, id)
import Html.App as App
import Debug

main =
 App.program
 { init = init
 , view = view
 , update = update
 , subscriptions = subscriptions
 }

-- MODEL

type alias Model =
 { mediaUrl : String
 , mediaType : String
 }

-- MSG

type Msg
 = NoOp

-- INIT

init : (Model, Cmd Msg)
init =
 { mediaUrl = "http://developer.mozilla.org/@api/deki/files/2926/=AudioTest_(1).ogg"
 , mediaType = "audio/ogg"
 }
 ! []

-- UPDATE

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 _ ->
 Debug.log "Unknown message" (model, Cmd.none)

-- SUBSCRIPTIONS

subscriptions : Model -> Sub Msg
subscriptions model =
 Sub.none

-- VIEW

view : Model -> Html Msg
view model =
 div [class "elm-audio-player"]
 [audio
 [src model.mediaUrl
 , id "audio-player"
 , type' model.mediaType
 , controls True
]
 []
]

Compile it using:

elm make Main.elm

Open the generated index.html in your browser. You should see the default audio player of your browser showing up.

Reading the currentTime property

Let's say that we want to display the currentTime property of the audio element just below it. Let's add it to the model as a Float:

type alias Model =
 { mediaUrl : String
 , mediaType : String
 , currentTime : Float
 }

We could as well use a Maybe Float here (and we certainly should). It would allow us to differenciate between no value and the value 0. But let's keep that for later.

Then init the currentTime to 0:

init =
 { mediaUrl = "http://developer.mozilla.org/@api/deki/files/2926/=AudioTest_(1).ogg"
 , mediaType = "audio/ogg"
 , currentTime = 0.0
 }
 ! []

And display it in the view:

view : Model -> Html Msg
view model =
 div [class "elm-audio-player"]
 [audio
 [src model.mediaUrl
 , type' model.mediaType
 , controls True
]
 []
 , div [] [text (toString model.currentTime)]
]

Compile your program and you should see a 0 displayed below the audio player. That's cool, but how should we do to update it? By writing a custom event handler.

Everytime the timeupdate event of the audio tag will be triggered, we will catch it and read the value of the currentTime attribute. The magic trick here is that every event contains the DOM element that triggered the event as the target attribute.

Start by importing the needed module:

import Html.Events exposing (on)

Create a new message type that will be triggered at each timeupdate:

-- MSG

type Msg
 = NoOp
 | TimeUpdate Float

Update the model when such a message is received:

-- UPDATE

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 TimeUpdate time ->
 ({ model | currentTime = time }, Cmd.none)

 _ ->
 Debug.log "Unknown message" (model, Cmd.none)

Then add the custom event handler and the JSON decoder below your update function:

-- Custom event handler

onTimeUpdate : (Float -> msg) -> Attribute msg
onTimeUpdate msg =
 on "timeupdate" (Json.map msg targetCurrentTime)

-- A `Json.Decoder` for grabbing `event.target.currentTime`.

targetCurrentTime : Json.Decoder Float
targetCurrentTime =
 Json.at ["target", "currentTime"] Json.float

Here we write a custom event handler called onTimeUpdate using the on function of the Html.Events module.

This custom event handler uses the Json decoder targetCurrentTime to read a Float value from the event located at target.currentTime.

Finally, make use of this new event handler in your view:

-- VIEW

view : Model -> Html Msg
view model =
 div [class "elm-audio-player"]
 [audio
 [src model.mediaUrl
 , type' model.mediaType
 , controls True
 , onTimeUpdate TimeUpdate
]
 []
 , div [] [text (toString model.currentTime)]
]

Now, compile your file and you should see the currentTime value updating when you play the file.

View the code of the resulting Main.elm on github.

Calling functions : Javascript ports

Now that we can read values coming from DOM elements, let's interact with the DOM elements from Elm. As I said in the preamble, the goal of Elm is to cover all the Web Platform. But in the meantime, we need to use javascript ports to communicate with elements not covered by pure Elm.

Let's say we want to add a button that will set the current time of the player at 2 seconds.

Elm side

First, let's declare that our module will contain some ports:

port module Main exposing (..)

Usually, you will only declare one port module in your application, registering all your ports in it. It will ease further debugging.

Then, as we will add a button and manage an onClick event, add the needed imports at the top of your file:

import Html exposing (Attribute, Html, audio, div, text, button)
import Html.Attributes exposing (class, controls, type', src, id)
import Html.App as App
import Html.Events exposing (on, onClick)
import Json.Decode as Json

We will add a new message for the set time functionality:

type Msg
 = NoOp
 | TimeUpdate Float
 | SetPlayerTime Float

And we will emit this message when clicking on a button in our view:

view : Model -> Html Msg
view model =
 div [class "elm-audio-player"]
 [audio
 [src model.mediaUrl
 , type' model.mediaType
 , controls True
 , onTimeUpdate TimeUpdate
]
 []
 , div [] [text (toString model.currentTime)]
 , button [onClick (SetPlayerTime 2.0)] [text "Set current time to 2s"]
]

We now need to handle this message in our update function like this:

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
 case msg of
 TimeUpdate time ->
 ({ model | currentTime = time }, Cmd.none)

 SetPlayerTime newTime ->
 (model, setCurrentTime newTime)

 _ ->
 Debug.log "Unknown message" (model, Cmd.none)

Notice that, in the SetPlayerTime newTime branch, we are not updating the model, we are just producing a Cmd Msg using a function called setCurrentTime with our number of seconds (newTime) as parameter. The model will be updated automatically by the TimeUpdate branch when the DOM event will be fired.

This setCurrentTime function is actually a port, that we need to define somewhere:

-- PORT

port setCurrentTime : Float -> Cmd msg

This port is used to send information on the Javascript side. In our case, it will tell javascript that we want to set the current time of the player to some Float value. We will of course need to implement this behaviour on the JS side. Let's do that now.

View the code of the resulting Main.elm on github.

Javascript side

In order to communicate between JS and Elm, we will need to add some Javascript code in our index.html file. But if you try to open the index.html file generated by elm make you will notice that it contains a lot of unreadable JS code. Let's put this code in a separate elm.js file, by compiling this way:

elm make Main.elm --output=elm.js

Then, open your index.html file and change it as follows:

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Main</title>
 </head>
 <body>
 <div id="elm"></div>
 <script src="elm.js"></script>
 <script>
 var node = document.getElementById('elm');
 var app = Elm.Main.embed(node);
 app.ports.setCurrentTime.subscribe(function(time) {
 var audio = document.getElementById('audio-player');
 audio.currentTime = time;
 });
 </script>

 </body>
</html>

Nothing fancy here. First we are including our newly generated elm.js file and we add some code to load our elm app into the #elm div.

Then we are using the special setCurrentTime.subscribe function created by our Elm port to get the time value sent by Elm on the JS side. We get the DOM element by it's id (the same we used in our Elm view) and we update the currentTime property of the audio element with the value previously sent using our Elm port.

Open the index.html in your browser, and you should be able to force the current time to 2s using our newly created button.

View the code of the resulting index.html on github.

Example using components

I'm always frustrated with blog posts (like this one) giving simple examples, but without showing how to integrate it in a more complex application. So I took the time to integrate the above code using child/parent components and the elm architecture.

I will not discuss the child/parent communication because other people like Brian Hicks are already doing it very well. I will just give you the link to the code so that you can play with it by yourself : code example on github.

Wrapping Up

We just saw how to communicate with an HTML audio tag using Elm and javascript ports. This technique can of course be applied to every DOM element. You will find a nice article by Søren Debois explaining how he is using it to get the dimensions of DOM elements on the page.

Of course if you have any question, feel free to ping me on Twitter @vjousse or directly on the Elm slack channel.

Have a nice day!

 Elm lang, le prochain react/redux/angularjs ?

 Dans le monde du développement frontend, il y a une nouvelle techno tous les jours. Et encore ça, c'est dans les mauvais jours. Quand j'ai voulu m'y remettre, j'étais forcément un peu perdu. J'avais fais du AngularJS et je ne voulais plus en entendre parler. Dans le coup j'ai demandé sur Twitter. n1k0 et MoOx m'ont alors montré la voix.

React/redux : les bons concepts, la grande communauté et javascript

Un consensus semblait se former autour de React+Redux avec webpack pour la boîte à outils et Immutable.js pour les structures de données immuables. Cool, j'avais mon point de départ. J'ai alors suivi deux tutos : Getting Started with React, Redux and Immutable: a Test-Driven Tutorial et Full-Stack Redux Tutorial dont le premier s'inspirait.

Ce qui m'a principalement séduit dans tout ça, c'est la nouvelle architecture que la communauté autour de ces outils/frameworks promeut. C'est à dire :

	Les composants de l'interface ne font qu'afficher. Aucun état (ou quasi pas) interne au composant. Les composants sont déclaratifs.

	L'état de l'application est représenté dans un arbre (state tree). Pour passer d'un état à un autre, on applique une fonction sur cet arbre qui nous donne un nouvel arbre (on ne mute pas l'ancien).

	Les composants ne font que refléter l'état immuable de l'arbre à l'instant T.

	Les fonctions sans état (pures) et les données immuables sont encouragées (on commence enfin à se rendre compte que raisonner sur des objets qui ont des états internes est très compliqué).

Pourquoi c'est sexy ça ? Parce qu'enfin on peut :

	Tester les composants d'affichage simplement. On leur donne juste le sous-ensemble de l'arbre qui les concerne et on voit comment ils se comportent.

	Facilement débugger le code qui gère le rendu. On connait l'état de l'arbre à chaque interaction, et les composants ne font que refléter cet état. Isoler les soucis est alors plus facile. Pas d'état caché à l'intérieur d'un composant.

	Tester nos fonctions simplement. Beaucoup moins de choses à mocker/simuler, l'approche fonctionnelle de tout ça permet de n'agir que sur les entrées des fonctions pour tester leur résultat.

	Facilement réutiliser des composants : ils ne dépendent d'aucune business logic, juste des données passées en paramètre.

Comme diraient mes chers coworkers : trop de swag ! Mais quelque chose continuait de me chiffoner : javascript.

Loin de moi l'idée de faire du "javascript bashing", c'est le langage du frontend web, et rien que pour ça, il est à respecter. Mais j'ai personnellement jamais accroché : trop bordélique, écosystème énorme (trop ?) mais de qualité très variable, difficilement lisible, …
Zut, j'avais trouvé une architecture qui me plaisait (React/Redux/Immutable.js) mais j'avais l'impression que c'était des choses qui auraient du être possibles au niveau du langage lui-même. J'avais la désagréable impression qu'on était en train de patcher Javascript lui-même.

Elm : les bons concepts, la petite communauté et le bon langage

C'est alors que je me suis rappelé ce dont mes chers amis Twitteriens m'avaient parlé auparavant : Elm. Elm c'est React/Redux/Immutable.js mais avec un langage pensé pour.

Elm est un langage de programmation fonctionnel (fonctions pures sans état) statiquement typé (un compilateur qui vous dit avant où sont vos erreurs) pensé pour le frontend et les interfaces graphiques (HTML/CSS, SVG, …). Vous pouvez programmer votre interface entrièrement en Elm, ou alors la connecter avec du Javascript plus classique via un système de ports (qu'on peut voir comme du « Javascript as a service » lorsqu'on fait du Elm).

Elm a plein d'avantages :

	Par défaut, il force l'architecture vue plus haut avec React/Redux/Immutable.js.

	Il dispose d'un compilateur convivial (oui c'est possible) qui affiche des conseils en plus des erreurs.

	Quand ça compile, ça marche. Plus de "undefined is not a function" au runtime.

	Le système de type et le compilateur permettent de refactorer sereinement. Besoin de moins de tests, et confiance dans le compilateur pour nous dire où on a fait une bêtise.

	Il est n00b friendly. C'est une des volontés du développeur principal : rendre la programmation fonctionnelle « Mainstream ». Et ça, c'est un gros plus.

	Il s'interface avec Javascript sans sacrifier ce qui fait de lui un bon langage (immuabilité, fonctions sans état, …)

Il a aussi des défauts :

	L'écosystème est encore petit. Il faut souvent s'interfacer avec du javascript alors qu'on aimerait bien tout faire en Elm.

	Il est purement fonctionnel, il peut donc dérouter ceux qui viennent d'un langage plus impératif (comme javascript).

	Il est encore jeune, l'API a donc tendance à changer (le passage d'Elm 0.16 à 0.17 en est un bon exemple).

Mon avis

J'ai beaucoup été attiré par les langages fonctionnels ces dernières années, mais je n'ai encore jamais réussi à en utiliser un pour de vrai dans mes développements quotidiens. Il y avait souvent trop de contraintes : système de type trop contraignant, équipe réfractaire à la programmation fonctionnelle, langages et communautés d'« élites » pour des « élites ».

Avec Elm, c'est différent. J'ai l'impression que la communauté a compris ces soucis et que son but, c'est d'en faire un langage accessible et utile. Tirer partie des meilleures parties des langages fonctionnels sans amener tout ce dont on se passerait bien.

Avec le changement de mentalité qui se fait dans le monde javascript vers un peu plus de fonctionnel (immuabilité, React/Redux, ES6, …) et Elm qui fait tout pour être attirant, j'ai envie de croire qu'Elm peut être « the next big thing » … enfin, jusqu'à la prochaine :-)

 How to pass paramaters to a crossbar.io/autobahn python component

 Recently, I've be playing with crossbar.io, a WAMP router and Autobahn|Python a library for writing WAMP compenents. It's really awesome to create reactive apps and to mix heterogenous applications together (python, JS, scala, PHP, whatever).

One of the main problem of crossbar/autobahn is the lack of a clear documentation. You often have to go through a lot of examples to try to understand how to do some stuff. One of the problem I had at the beginning was: "How can I pass custom options to my crossbar/authobahn component"? So here it is.

Command line options

When you run your autobahn component in your console, you certainly have something like that in your python file:

File test.py

from twisted.internet.defer import inlineCallbacks
from autobahn.twisted.wamp import ApplicationRunner
from autobahn.twisted.wamp import ApplicationSession

class AppSession(ApplicationSession):

 @inlineCallbacks
 def onJoin(self, details):
 # Your code here
 pass

if __name__ == '__main__':

 runner = ApplicationRunner(
 url="ws://127.0.0.1:8080/ws",
 realm="realm1")

 runner.run(AppSession)

Then you run it like that:

python test.py

Let's say you want to pass some parameters from the command line:

python test.py value1 value2

Now in your main code:

import sys

#...

if __name__ == '__main__':

 # Don't do this in real life
 args1 = sys.argv[1]
 args2 = sys.argv[2]

 runner = ApplicationRunner(
 url="ws://127.0.0.1:8080/ws",
 realm="realm1")

 runner.run(AppSession)

But how can you use the values in your AppSession class, as you are not responsible for creating it?

Well, you can pass a parameter called extra to the ApplicationRunner constructor and then use it in your code with self.config.extra.

-*- coding: utf-8 -*-
import sys
from twisted.internet.defer import inlineCallbacks
from autobahn.twisted.wamp import ApplicationRunner
from autobahn.twisted.wamp import ApplicationSession

class AppSession(ApplicationSession):

 @inlineCallbacks
 def onJoin(self, details):
 print("Joined")

 # Do some stuff with your values here
 print(self.config.extra['v1'])
 print(self.config.extra['v2'])

if __name__ == '__main__':

 args1 = sys.argv[1]
 args2 = sys.argv[2]

 runner = ApplicationRunner(
 url="ws://127.0.0.1:8080/ws",
 realm="realm1",
 extra={'v1':args1, 'v2':args2})

 runner.run(AppSession)

Crossbar configuration options

If you run your component in production using crossbar.io and not the command line, you can pass the parameters in your crossbar.io config file:

 {
 "type": "container",
 "options": {
 "pythonpath": [".."]
 },
 "components": [
 {
 "type": "class",
 "classname": "mithril.mithril.AppSession",
 "realm": "realm1",
 "extra": {
 "v1": "value1",
 "v2": "value2"
 },
 "transport": {
 "type": "websocket",
 "endpoint": {
 "type": "tcp",
 "host": "127.0.0.1",
 "port": 8080
 },
 "url": "ws://127.0.0.1:8080/ws"
 }
 }
]
 }

Here your are! Enjoy.

 Installing ATLAS for Kaldi by disabling CPU Throttling on Archlinux

 I was trying to compile ATLAS (Automatically Tuned Linear Algebra Software) to install Kaldi on my new archlinux computer, and I ran into this error
:

CPU Throttling apparently enabled!
It appears you have cpu throttling enabled, which makes timings
unreliable and an ATLAS install nonsensical. Aborting.
See ATLAS/INSTALL.txt for further information
xconfig exited with 1

Of course, the first thing I did was to check Google for the error, and the answer was pretty clear: disable CPU Throttling. "Cool story bro", but how can I do it?

I had to set the scaling governor of my cpus to performance. So did I.

First by modifying directly the files with this command line (using bash):

for CPUFREQ in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor; do [-f $CPUFREQ] || continue; echo -n performance > $CPUFREQ; done

Of course, it didn't work.

Then, as mentionned on the Archlinux wiki page I used cpupower:

cpupower frequency-set -g performance

Of course again, it didn't work.

Then I found the Holy Grail with this post on StackExchange. The problem is specific to the
 intel_pstate governor (default for Intel Sandy Bridge and Ivy Bridge CPUs as of kernel 3.9). So the solution is simply to disable it and load the acpi-cpufreq module. And Ta-da!

 Quel langage de programmation choisir ?

 Des langages, j'en ai essayé. De PHP, à Scala en passant par Ruby, Java ou encore Python, j'ai pas arrêté de chercher « le bon langage ». Et puis, je crois qu'après toutes ces années (han, ça fait 17 ans en fait …), j'ai enfin trouvé le bon. Jusqu'au prochain.

De PHP à Scala

Même si j'en ai pratiqué beaucoup, j'ai fait la majeure partie de ma « carrière professionnelle » grâce à PHP. Et puis, lorsque PHP s'est transformé en un JAVA bis, je suis parti à la recherche d'un nouveau langage. La programmation fonctionnelle revenait à la mode, et mon choix s'est porté sur Scala : la programmation fonctionnelle allait tout résoudre et Scala serait THE langage. Ou pas.

Plus je faisais de Scala, moins je prenais de plaisir à en faire. Et pourtant, ça semblait résoudre beaucoup de mes soucis de développeur : mon code était plus propre, plus testable et plus facilement refactorisable. En plus, j'étais hype. Mais il y a quelque chose qui clochait. J'ai mis du temps à m'en apercevoir, mais c'était pourtant là sous mon nez : je ne résolvais pas le bon problème.

Pourquoi code-t-on ?

Une majeure partie d'entre nous s'est mis à aimer le code pour une raison : se rendre utile. Le bonheur de faire un programme de ses petites mains et de le voir fonctionner pour la première fois a un côté presque jouissif. Coder est une façon d'être concrètement utile à des gens. Que ce soit en offrant des moments de détente, d'information ou en proposant quelque chose de nouveau, le fait de savoir coder fait de nous des acteurs essentiels du monde de demain.

Finalement je me suis rendu compte que les langages que j'appréciais le plus, avaient toujours été les langages qui me permettaient de d'abord résoudre les problèmes des autres. Par rapport au temps passé et comparé à PHP, j'arrivais à faire beaucoup moins de choses avec Scala. J'ai cru que ce n'était qu'une question de courbe d'apprentissage mais non : après plus d'un an, Scala ne me permettait pas de résoudre rapidement et itérativement les problèmes des autres.

Le critère de choix

J'ai donc récemment adopté une nouvelle approche quant au choix d'un langage de programmation : en quoi va-t-il me permettre (ou pas) de résoudre les problèmes des autres ? Si changer de langage ne me permet pas de répondre clairement à cette question, je ne change pas.

Je ne dis pas que je n'essaie plus d'autres langages, au contraire. J'ai jamais autant appris ces derniers temps qu'en faisant de la programmation fonctionnelle avec Scala notamment. Mais Scala n'était pas la bonne approche pour moi. Ça m'a en revanche permis de beaucoup améliorer la qualité de mon code « procédural » en le rendant plus « fonctionnel ».

Étant principalement passionné de développement web, mais étant aussi chercheur à l'Université (et donc amateur de prototypes jetables), il me fallait quelque chose qui puisse allier les deux mondes. Mon choix s'est porté sur Python et le résultat ne s'est pas fait attendre : j'ai repris plaisir à résoudre des problèmes grâce à des lignes de code.

Pour moi, le seul et unique critère pour choisir un langage de développement devrait donc être : prend-on plaisir à résoudre des problèmes avec ? Si la réponse est oui, ne cherchez pas plus loin.

 Using Archlinux on a Retina (HiDPI) MacBook Pro with Xmonad

 I've recently installed Archlinux on the latest 15" MacBook Pro Retina (late 2013). This model seems to be known under the name "MacbookPro 11,2" (ME293xx/A) on the Apple website. Here is the exact configuration: 15.4"/2.0 Quad-core i7/8GB/256-Flash. The installation was a little bit painful (especially the EFI part), but somehow I found out how to have a bootable Archlinux.The hardest part (understand, the less documented one) was how to have a Desktop with a "normal" font size. Indeed, by default, the resolution of the screen is 2880x1800, thus you need very good eyes to be able to see something.

Installation

As I said, the installation was a bit painful. I followed the Archlinux Wiki instructions. I've used the Archboot image, rEFInd and Grub2.

To be able to access the installer without having glitches on your screen you need to boot it adding the nomodeset option to the kernel. To be able to do that you need the Grub menu of the installer to show up and modify the boot options. Unfortunately, when booting directly on my USB key using the Option (alt) button at startup, the Grub menu didn't show up, just a nice black screen.

In order to have the Grub menu showing up, I needed to install rEFInd under Mac OS X first, then to not press the Option (alt) button but let it boot under rEFInd. Then I choosed the "Boot Legacy OS From HD" option, the last one, with a grey icon. And, for whatever reason, it did the trick and I was able to boot under the grub menu and add nomodeset to the boot options.

Then, regarding Internet access, I was using the "Thunderbolt to gigabit ethernet adapter" from Apple http://store.apple.com/us/product/MD463ZM/A/thunderbolt-to-gigabit-ethernet-adapter?fnode=51. Hot plugin the adapter is not supported, so you need to boot with the adapter plugged in. Later I installed the broadcom-wl package from AUR to have the Wireless card working. It worked out of the box (I'm using Wicd to manage my network).

The current kernel is the 3.12 one and it doesn't support the Intel Iris Pro 5200 Graphic card. So for now, in order to have Xorg working, you will need to use the framebuffer (fbdev) driver. To do so I created a /etc/X11/xorg.conf.d/1-monitor.conf file with this content:

Section "Monitor"
 Identifier "Monitor0"
EndSection

Section "Device"
 Identifier "Device0"
 Driver "fbdev"
EndSection

Section "Screen"
 Identifier "Screen0"
 Device "Device0"
 Monitor "Monitor0"
EndSection

With the 3.12 kernel, speakers will not be working. If you want to have the speakers working, you will need to install the linux-mainline package from AUR or wait for the 3.13 kernel to be released. Don't forget to update the entries in your Grub or to override (symlink) your /boot/initramfs-linux-fallback.img /boot/initramfs-linux.img /boot/vmlinuz-linux files with the linux-mainline ones.

That's it for the installation part. You should now have a working Archlinux install but the fonts should be very small, almost unreadable.

Fonts and screen resolution/DPI problems

When you search on the web for how to manage retina screens under Linux it seems that the only answer is to use KDE/Qt. As a big fan of Xmonad, this answer didn't satisfied me. So, after some research, here are the things you have to manage to have a good looking Xmonad using a retina screen:

	X font DPI

	Gtk 2.0 and Gtk 3.0 themes / font size

	Terminal's font (I'm using Urxvt)

	Firefox and Thunderbird display size

So here we go in detail.

Setting the X font DPI

This part is done using a file called .Xresources located in your home. If it doesn't exist, just create it and add the following code:

! Fonts {{{
Xft.antialias: true
Xft.hinting: true
Xft.rgba: rgb
Xft.hintstyle: hintfull
Xft.dpi: 220
! }}}

Managing Gtk themes

Gtk2 themes are managed using the file ~/.gtkrc-2.0. Gtk3 themes are managed using ~/.config/gtk-3.0/settings.ini. I recommand to install the package lxappearance to manage the gtk themes. It will create the required files. Personnaly I've installed the zukitwo-themes and faenza-icon-theme packages. In lxappearance I'm using Adwaita for the widgets, Faenza-Radiance for the icons and Adwaita for the mouse cursor.

Once I did that, the font was still too big in Gtk apps like Firefox and Thunderbird. So I had to override the default font size set by lxappearance. To do so I created a file ~/.gtkrc-2.0.mine with only the font part to override:

gtk-font-name="Cantarell 8"

For Gtk3 themes, I had to overwrite the file generated by lxappearance. So here are my 3 files:

~/.gtkrc-2.0

DO NOT EDIT! This file will be overwritten by LXAppearance.
Any customization should be done in ~/.gtkrc-2.0.mine instead.

gtk-theme-name="Adwaita"
gtk-icon-theme-name="Faenza-Radiance"
gtk-font-name="Cantarell 18"
gtk-cursor-theme-name="Adwaita"
gtk-cursor-theme-size=0
gtk-toolbar-style=GTK_TOOLBAR_BOTH
gtk-toolbar-icon-size=GTK_ICON_SIZE_LARGE_TOOLBAR
gtk-button-images=1
gtk-menu-images=1
gtk-enable-event-sounds=1
gtk-enable-input-feedback-sounds=1
gtk-xft-antialias=1
gtk-xft-hinting=1
gtk-xft-hintstyle="hintfull"
gtk-xft-rgba="rgb"
include "/home/vjousse/.gtkrc-2.0.mine"

~/.gtkrc-2.0.mine

gtk-font-name="Cantarell 8"

~/.config/gtk-3.0/settings.ini

[Settings]
gtk-theme-name=Adwaita
gtk-icon-theme-name=Faenza-Radiance
gtk-font-name=Cantarell 8
gtk-cursor-theme-name=Adwaita
gtk-cursor-theme-size=0
gtk-toolbar-style=GTK_TOOLBAR_BOTH
gtk-toolbar-icon-size=GTK_ICON_SIZE_LARGE_TOOLBAR
gtk-button-images=1
gtk-menu-images=1
gtk-enable-event-sounds=1
gtk-enable-input-feedback-sounds=1
gtk-xft-antialias=1
gtk-xft-hinting=1
gtk-xft-hintstyle=hintfull
gtk-xft-rgba=rgb

Terminal's font

As I'm using rxvt-unicode (if you don't, you should really), I just have to modify the font size in my .Xresources file like that:

urxvt.font: xft:DejaVuSansMono:size=8

Nothing fancy here.

Firefox and Thunderbird display size

Here is the final touch. Thanks to the modifications above, the menus are displayed correctly, but the pages are really small, almost unreadable in Firefox and Thunderbird. To have readable pages, you need to change a config value named layout.css.devPixelsPerPx and set it to 2.

To do so in Firefox type about:config in the menu bar and search for the key named layout.css.devPixelsPerPx. By default the value is -1.0, set it to 2.

In Thunderbird, go to Preferences > Advanced and in Advanced Configuration click on the Config Editor button. The the layout.css.devPixelsPerPx value to 2.

From time time I'm using Opera too. For Opera I've just changed the default Zoom value and it did the trick.

One last thing, sometimes, Firefox is using ugly fonts to display web pages. To avoid that, you just have to disable bitmap fonts in X as mentionned on the Arch wiki page:

sudo ln -s /etc/fonts/conf.avail/70-no-bitmaps.conf /etc/fonts/conf.d/

Conclusion

Using a Retina screen on a daily basis with Archlinux is awesome. Font rendering is incredible and it's hard to go back to a non-retina screen. With the above tips, you should be able to have an almostfully working environment. You can find all my configuration files on Github. Some apps are still not displaying very well (Skype for example) but it's not really a problem, it's still totally usable. If I find a way to fix it, I'll let you know here. Enjoy!

 How to use the Dropbox API with scala and/or Play Framework

 Recently, I had to connect a scala application to a Dropbox account. As I didn't found any good example on how to do so, I decided to write a blog post about it. Here we are.

Standalone scala application using Dropbox4s

Dropbox4s is a scala DSL on top of the Java SDK for the Dropbox API. As I had some troubles to understand how it was supposed to be working, so I decided to write a sample sbt application. I've reimplemented the dropbox Java tutorial using Dropbox4s. Here is the code :

import com.dropbox.core.{DbxAppInfo, DbxAuthFinish, DbxWebAuthNoRedirect}
import com.dropbox.core.DbxEntry.WithChildren
import dropbox4s.core.CoreApi
import dropbox4s.core.model.DropboxPath
import scala.language.postfixOps

object TestDropbox extends CoreApi {

 // implements fields
 val applicationName = "YourApplicationName"
 val version = "1.0.0" // your application version(string)
 val appKey = "INSERT_APP_KEY"
 val appSecret = "INSERT_APP_SECRET"

 val appInfo = new DbxAppInfo(appKey, appSecret)

 val webAuth = new DbxWebAuthNoRedirect(requestConfig, appInfo)

 val authorizeUrl: String = webAuth.start()

 def main(args: Array[String]) = {
 println("1. Go to: " + authorizeUrl)
 println("2. Click \"Allow\" (you might have to log in first)")
 println("3. Copy the authorization code.")

 val code = readLine("Please, past the authorization code here: ")

 // This will fail if the user enters an invalid authorization code.
 implicit val auth: DbxAuthFinish = webAuth.finish(code)
 val accessToken: String = auth.accessToken

 println("Linked account: " + client(accessToken).getAccountInfo().displayName)

 val appPath = DropboxPath("/")

 // Upload a file
 val localFile = new java.io.File("working-draft.txt")
 val remoteFile = DropboxPath("/magnum-opus.txt")
 val uploadedFile = localFile uploadTo remoteFile

 // If you want to erase the uploaded file each time
 // (without creating versions with numbers)
 // Be sure to set the isForced parameter to true
 // val uploadedFile = localFile uploadTo(remoteFile, true)

 // List directory
 val children: WithChildren = appPath children

 for (child <- children) {
 println(" " + child.name + ": " + child.toString())
 }

 // Download file
 val myFile = remoteFile downloadTo "magnum-opus.txt"

 }
}

With the correct sbt configuration and the correct app keys, it should be working out of the box. Don't forget to add the following lines to your build.sbt file:

resolvers += "bintray" at "http://dl.bintray.com/shinsuke-abe/maven"

libraryDependencies += "com.github.Shinsuke-Abe" %% "dropbox4s" % "0.2.0"

Play application with oAuth redirection

Having to copy/paste a token to be connected to Dropbox is not very handy. So I decided to write a Play Application implementing the oAuth workflow like documented on the Dropbox blog.

You'll find the code on my Github account.

Enjoy and have fun!

 How to fix archlinux (rEFInd) boot after Mac OS X upgrade

 Yesterday I applied the Mac OS X Mavericks 10.9.1 upgrade. And of course, after rebooting, my rEFInd boot had disappeared. Damned, it was booting directly under Mac OS X.

I had installed rEFInd using install.sh script without any argument, as mentionned in the documentation. When you do so, it installs rEFInd directly on the / partition of you Mac. Why not, but you have to be aware that it will be erased with Mac OS upgrades.

First try: fail

The solution would be to run the install.sh script with the --esp option: install.sh --esp. It should install rEFInd on the ESP partition of you Mac so that it's not overwritten when you upgrade Mac OS X. It's the first fix I tried, without any success. The Mac was not booting anymore, only a grey screen, w00t.

To fix this grey screen, I had to boot holding the Alt key of the Mac. Then I had to boot under the Recovery partition. In the menu I've forced my boot disk to be my SSD. I have no idea why I had to do that, but well, my Mac was booting under Mac OS X successfully after that.

Second try: success

As it seems that the --esp was not working very well for me, I tried to redo what I did in the first place: just running install.sh without any argument to install rEFInd. And well, it worked, my rEFInd menu is back.

Now, I know that after each upgrade of Mac OS X, I will have to run install.sh from rEFInd again to have the ability to boot my ArchLinux.

 PHP: you love it or you leave it

 I do love PHP. Well, to be more precise, I used to love PHP a lot, and I still respect it and people using/improving it. You can do whatever you want with PHP, from the very quick and dirty way, to the bloated framework way (oh c'mon).
I think this is why people of my generation love PHP, they grew with it like I did. They have learnt Java at school while they were doing PHP and fun stuff at home in the meantime. And to be honest, between Struts/Spring/Hibernate/PutWhateverJavaFrameworkWorksForYouHere and <?php $_GET['myXssAttack']"; ?>, the later was a lot more lovely.

Then you've learnt with it, the easy way

Some time ago, sessions were implemented in PHP. I can remember when I was still using PHP 3 that it was a big change. We even had classes! Well, some stuff to aggregate other stuff inside the same class name to be precise. But it was great.
Then we started to have design patterns, like the "real java developers had"! My lovely singleton. And then, symfony1 was born (still with my lovely singleton). Symfony1 was a big change, it was putting different components together to automate a lot of things. It was like "WOW", we can do real crazy "professional" stuff with PHP! I have learnt a lot of things thanks to symfony1 and its beautiful documentation. Separation of concerns, Active Record (using Propel), XSS/CSRF protections, coding standards, unit and functional testing, etc. I was an adult programmer.

And the problem when you're an adult programmer is that you start to think by yourself. As every symfony1 guy, I was totally excited by Symfony2, just because 2 is twice better than 1. But something was strange to me. I had the feeling that, even if all the concepts were making sense, something was wrong. Writing tons of XML to manage separation of concerns, having to hint types in functions, but not all the types, and only in function signatures ... I was back 10 years ago, when I made the choice not to go with the Java boilerplate.

I realised that Symfony2 was trying to fix the language, and that we were using "good java practices" with the wrong tool: PHP.

Then you move away from it, the easy way

I was at a point where, moving from PHP to something else was easier than it could have been for me some years ago, it's what we can call the "experience" maybe. I learnt a lot with it, but fixing the language by writing abstractions on top of it (also called Symfony components ;)) was not going to be my next challenge. Because yes, we need challenge. And I am pretty convinced that it's why people love Symfony so much. It's giving challenges into something that is far from being sexy or challenging as a language: PHP.

Well guys, I totally respect what you are able to do with PHP, but you do not think that it's time to move on? To let PHP be a fabulous scripting language for simple stuff like Rasmus said and to manage complexity with languages that can handle it in a cleaner way? Scala, Clojure, Erlang, Haskell and functional programming in general should be your next challenges. If you make the choice to stay with PHP, please, don't do another Java with it.

 Trust the h^Wtype

 I was used to write a lot of PHP code, mostly using the symfony framework. When I discovered unit testing with PHP, I was like I had discovered a new way of programming.

Unit testing: your own compiler

It was not required anymore to open a web browser to check if my code was working, I just had to launch a command line, and the red or green lights were telling me if my code was working (or at least, not throwing trivial warnings, notices or exceptions). It was a revolution for me.

It took me a while to realize that for each and every project that I was doing in PHP, half of my tests was doing the job of a compiler (checking the expected output, checking that methods names have been changed everywhere when refactoring, ...). What was the point in re-inventing the wheel?

Type inference: a taste of dynamic language

I was re-inventing the wheel because languages with a compiler were (to me) really verbose for a little added value. Having to tell to Java that "foo" must be treated as a string and 2 as an integer, and 3.2 as a float number was adding a lot of boilerplate to the code:

String test = "foo";
int two = 2;
float three = 3.2;

Using PHP it was more easy:

$test = "foo";
$two = 2;
$three = 3.2;

But what I loosed in PHP was that substracting a number to a string should not be permitted:

$bar = $test - $two;

But obviously in PHP it just works. I mean, it does not complain:

echo $bar;

And it displays ... the number -2 (seriously? ;)).

So what about something like that (example in Scala):

val test = "foo"
val two = 2
val three = 3.2

You don't have to specify the types (like in PHP), but it complains when you try to do so:

val bar = test - two

Here is the error message when you try to compile:

error: value - is not a member of java.lang.String
val bar = test - two
 ^
one error found

You can see that the compiler as inferred the type of test as a String without having to tell it explicitly.

The compiler is your friend

If you are using a language like PHP (or some other dynamic language) and you are writing tons of unit tests to cover your (hypothetical? ;)) refactoring, specifying types hints in function parameters (typical in PHP those days) you should really ask yourself if you are using the right tool for the right job.

Using a srongly typed language that is using type inference (like Scala or Haskell) could save you plenty of time. You'll have the unique sensation that: "once it compiles, it will most likely work". You should think twice about it.

